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An approximate method for the analysis of the thermal conditions of complex ob- 
jects is considered, consisting of the successive application of a series of mathe- 
matical models differing in the degree of detail of the temperature-field descrip- 
tion. 

In designing complex technical objects in instrument construction and mechanical engi- 
neering, it is often necessary to analyze their thermal conditions. The basic complexity of 
this analysis for many devices is associated with the difficulties in taking account of the 
mutual influence of the large bodies in thermal contact with energy sources and gas or li- 
quid fluxes. A sufficiently complete mathematical description of the temperature field of 
such objects may be given in the form of a system of differential heat-conduction equations 
for solids 

OTi _ div (~ grad Ti) 4z qvi, i 1 . . . .  [ (cp)~ 0"~ (i) 

and energy equations for the heat-carrier fluxes 

( oh ) (2) 
(c9)zk aT @v'gradh = div (%z grad h), l= I, ..., L 

with boundary conditions of the first, second, and third kind or with matching conditions 
at the interfaces. 

However, even with the use of modern computers, it is usually difficult or even prac- 
tically impossible to realize such a complete mathematical model for complex objects. In 
addition, attempts to rigorously describe the temperature field in a complex system may prove 
inexpedient, not only because of the unwieldiness of the problem t but also because of our im- 
precise knowledge of the input information required for the calculation (heat-source powers, 
heat-transfer coefficients, thermophysical properties of the bodies, heat-carrier flow rates). 
At the same time, to ensure normal thermal conditions of a series of objects, it is required 
to calculate the temperature fields at different levels of the constructional hierarchy with 
different (often very high) degrees of detail. These difficulties are avoided by developing 
approximate methods of analysis of the heat-transfer processes in systems of bodies. 

Experience in calculating the thermal conditions of complex objects in cryogenic elec- 
tromechanical engineering [i], and optical and electronic instrument construction [2], shows 
the efficiency of the general approach to the analysis of temperature fields of a system of 
bodies known as the method of stage-by-stage modeling. 

The essence of the given method is as follows. The thermal field of a complex system 
is calculated by the successive use of different thermal and mathematical models. A model 
describing the thermal conditions of the whole system with the minimal permissible degree 
of detail is first used. This stage allows the mean (e.g., volume-mean and surface-mean) 
temperatures of the bodies or groups of bodies and the mean flow temperatures of the heat- 
carrier fluxes to be determined. Then the system is broken down into its individual parts 
and more detailed analysis of their thermal conditions is performed. The heat-transfer condi- 
tions between each individual region of the system and the remaining components are described 
(i.e., the boundary conditions are specified) using information obtained in the preceding 
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stages of the calculation. In the boundary conditions at the surfaces separating the part 
of the system considered in the given stage of the calculation, the mean values of the heat 
fluxes or temperatures of the surrounding bodies determined previously are used. 

The construction of the models in the method of stage-by-stage modeling includes two 
parts: first, enlargement of the model for the calculation of certain mean characteristics; 
second, the separation of an element or group of elements of the system for detailed anal- 
ysis. 

There are two general methods of constructing an enlarged model. The first is to pass 
from a system of bodies to a quasihomogeneous body. This approach is possible in the case 
when the system consists of a sufficiently large number of constructionally similar elements, 
with repeating measurements (e.g., the heated zone of an electronic apparatus of cassette 
construction, the winding of an electrical machine). In the analysis of the heat conditions 
of such systems, they may be regarded as quasihomogeneous bodies with effective thermophysi- 
cal properties. A model of the quasihomogeneous body allows the spatial distribution of the 
local mean (within the limits of the elementary cell) temperature [3]. The temperature dis- 
tribution inside the elementary cell may later be analyzed in more detail. 

In the other method of constructing the enlarged model, integral operations of averag- 
ing with respect to a certain coordinate or over the volume may be applied to the initial 
model. In this case, the problem either leads to equations describing a temperature field 
of smaller dimension or reduces to the problem of calculating the surface-mean and volume- 
mean temperatures. 

Now consider the transition from a mathematical model describing the temperature field 
of a system of bodies using a system of partial differential equations to a model with point 
parameters. Within the framework of the latter model, the state of the elements of the sys- 
tem is characterized by one or a few values of the temperature, and the mathematical model 
takes the form of a system of algebraic (for steady problems) or ordinary differential (for 
nonsteady problems) equations. 

To pass to a model with point parameters, the operator of averaging over the volume 

V v f (x) dV : f v  (3) 

is applied to Eqs. (I), (2). Then for the solid bodies we obtain 

C, dTz-----Z-v= S ~ , i g r a d T i . n d S ~ - P i ,  i =  1 . . . .  , I, (4) 
d'r s i 

and for the heat-carrier fluxes 

Cz dtw _ ,[ 3 , zgrad t z .ndS- -  ~ cpw.ntzdS,  l 1, . . . ,  L. (5) 
dT s z s~ 

Taking into account that at the solid-body surfaces S~ bounding the fluxes, the normal com- 
ponent of the velocity is zero (v" n = 0), and assuming that conductive heat transfer 
through the surfaces Sl,in and Sl,out of the input and output cross sections of the flux 
may be neglected in comparison with the convective heat transfer, Eq. (5) is written in the 

form 

C~ dtw 
d--T- ~ S ~zgradtz .ndS - -  ,I Cpzv.ntzdS = S ~zgradtz.ndS--cl(Gout:tZ,ou t --~ntz,in)" (6) 

S! St,in ~sl, o u t  Sl 

Equations (4), (6) express, in integral form, the energy-conservation law for the i-th 
body and the l-th flux. The next step of the transition to a model with point parameters is 
to specify the expressions for the heat flux passing through the surfaces S i and S~. In many 
cases it proves possible to describe the heat transfer between the bodies and between the 
bodies and the fluxes using the thermal conductivities. The thermal conductivities oi-j and 
oi_ l are now introduced; by definition, 

~i - i  = P~-i/(Ts~.~ - -  Tis,~),  (7)  
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a i - i  : P i - d ( T ~ s , ~  - -  tlv). (8) 

Substituting the expressions for the heat fluxes at the boundaries into Eqs. (4) and 
(6), the result is a system of ordinary differential equations in terms of the mean tempera- 
tures 

Ni 1 L 
Ci d T i v  1 

dx --~ [ ~cri-/<Tis'"-Tis'~) -?~G'-'(tzv--Tis'~)] +pi' i=l .... ' 1' <9) 
n = l  ] = 1  l = I  

i 
,C~ dt:v - -  ~ o i - I  (T is .n  - -  ely) - -  cz (Gout tz, out--GintZ,in), l - -  1 . . . . .  L. (10) 

dr  ~=1 

The following unknowns appear in Eqs. (9), (I0): for the solid bodies, the volume-mean 
temperature TiV and the mean temperature TiS,n of the sections into which the surface is di- 
vided in order to specify the heat fluxes to the surrounding bodies and cavities; for the 
heat carriers, the volume-mean temperature tiv and the mean flow temperature of the outgoing 
flow tl,ou t. The temperature tZ in is either specified, if the flux enters the system from 
outside, or calculated from the'temperature of the outgoing fluxes whose mixing forms the 
given flux. 

The number of unknown temperatures in the system (9), (i0) exceeds the number of equa- 
tions (I + L). Therefore, closure of the system entails the use of additional equations 
establishing a relation between the desired temperatures. 

Some methods of closing the system of equations are now considered. The simplest 
method is to assume that the temperature field in the bodies is uniform; this is correct 
if the internal thermal resistance is much less than the external value (Bi << i): 

Tiv = Tzs,I ..... Tis.n. (ii) 

In some systems, further enlargement of the model is possible: some bodies are assumed 
to be equal in temperature, groups of bodies are combined, and a model of the system with a 
smaller number of bodies is then considered. The basis of this approach and algorithms of 
model enlargement were given in [4, 5]. 

Sometimes, knowledge of the surface-mean temperature TiS of a given body is sufficient 
in order to describe its heat transfer with its surroundings. In this case closure of the 
system of equations is secured by introducing the coefficient of nonuniformity of the tem- 
perature field 

Vi = Tis -- T~ Ti = ~ 6i-iTis/~ 6i-i, (12) 

where ~i is the temperature of an arbitrary medium for the i-th body. 

For bodies with internal heat sources, in steady conditions, ~i may be approximately 
specified by means of the well-known solution for canonical bodies [3] 

( )' = 1 + - - 1  Bi , (13) 
n 

where n = 3, Bi = aZ/X for a plate of thickness 2Z; n = 6, Bi = aR/X for an infinite cylin- 
der; and n = 5 for a sphere. 

In nonsteady conditions, the generalized dependence for regular conditions may be used 
[3]: 

: ( H Z + l , 4 4 H - t - l )  - I ,  H ~  a K S ,  
x v  (14) 

where H is the generalized Biot number; K is the shape factor of the body. 

In establishing the relation between the flux temperatures tZV , tl,in , and tl,out, two 
approaches are most often used: 

i) ideal mixing of the heat carrier in the cavity is assumed, so that 
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2) it is assumed that 

tl, out = t .v, ( 1 5 )  

llv =(/t,  our + tl,in)/2. 

The n o n u n i f o r m i t y  c o e f f i c i e n t  o f  t h e  l i q u i d - f l u x  t e m p e r a t u r e  f i e l d  may be  i n t r o d u c e d  

(16) 

Tz = (tlv --tz,in)/(tz, out - -  tt,in), (17) 

which is estimated from a consideration of some model problems. For example, for a one- 
dimensional flow in a channel of length h with a wet perimeter U at constant wall tempera- 
ture and with a local heat-transfer coefficient a: 

~ l =  1 - - e x p  ~ aUh" 

The p r o b l e m  of  c l o s i n g  t h e  s y s t e m  of  e q u a t i o n s  c o n s i d e r e d  f o r  t h e  example  of  t r a n s i t i o n  
to  a model  w i t h  p o i n t  p a r a m e t e r s  a r i s e s  i n  any e n l a r g e m e n t  of  t he  model  by means of  a v e r a g i n g  
of the  i n i t i a l  e q u a t i o n s .  The mean ing  of  c l o s u r e  of  t h e  e n l a r g e d  mode l  c o n s i s t s  i n  t h e  a p -  
p r o x i m a t e  r e c o v e r y  of  i n f o r m a t i o n  on the  t e m p e r a t u r e  f i e l d s  l o s t  i n  p e r f o r m i n g  the  a v e r a g i n g .  
The adequacy  of  t he  e n l a r g e d  mode l  and i t s  a p p l i c a b i l i t y  f o r  t h e  c a l c u l a t i o n  of  mean t e m p e r a -  
t u r e s  and h e a t  f l u x e s  (unde r  t h e  c o n d i t i o n  t h a t  t he  i n i t i a l  mode l  i s  a d e q u a t e )  a r e  d e t e r m i n e d  
by the  c o r r e c t n e s s  of  t h e  me thods  of  c l o s u r e  a d o p t e d .  

A f t e r  c o n s t r u c t i n g  an e n l a r g e d  m o d e l ,  t h e  n e x t  s t e p  i s  to  s e p a r a t e  t he  s y s t e m  i n t o  p a r t s  
and a n a l y z e  the  i n d i v i d u a l  r e g i o n s .  A c c o r d i n g  to  t h e  b a s i c  i d e a  of  t h e  me thod ,  the  v a l u e s  
of  t he  mean t e m p e r a t u r e s  and h e a t  f l u x e s  o b t a i n e d  i n  t h e  p r e c e d i n g  s t a g e  of  the  c a l c u l a t i o n  
u s i n g  t h e  e n l a r g e d  mode l  a r e  used  i n  s p e c i f y i n g  t h e  b o u n d a r y  c o n d i t i o n s  f o r  t he  r e g i o n  of  
t he  s y s t e m  c o n s i d e r e d  i n  t h i s  s t a g e .  The t e m p e r a t u r e  d i s t r i b u t i o n  T(x)  or  h e a t - f l u x  d e n s i t y  
q (x )  a t  t h e  b o u n d a r i e s  of  t he  r e g i o n  o r  t he  t e m p e r a t u r e  d i s t r i b u t i o n  of  the  S u r r o u n d i n g  i d e a l  
medium Tc(x)  a r e  r e p l a c e d  by t h e i r  mean v a l u e s  <Tn> , <qn >, <Tcn> o v e r  t h e  s e c t i o n s  Fn: 

The p o s s i b i l i t y  of  r e p l a c i n g  t h e  s p a t i a l  d i s t r i b u t i o n  o f  t he  t h e r m a l  p e r t u r b a t i o n s  a t  
the  b o u n d a r i e s  by mean p e r t u r b a t i o n s  i s  b a s e d  on t h e  p r i n c i p l e  of  l o c a l  i n f l u e n c e ,  a c c o r d i n g  
to  which  "any  l o c a l  p e r t u r b a t i o n  of  t he  t e m p e r a t u r e  f i e l d  i s  l o c a l  and does  n o t  p r o p a g a t e  to  
r e m o t e  s e c t i o n s  of  t h e  f i e l d "  [ 3 ] .  Thanks to  t h e  a c t i o n  of  t he  l o c a l - i n f l u e n c e  p r i n c i p l e ,  
l e s s - d e t a i l e d  d e s c r i p t i o n  of  t h e  h e a t - t r a n s f e r  p r o c e s s e s  i n  t h e  r e g i o n s  of  the  s y s t e m  r e m o t e  
f rom t h o s e  t h a t  a r e  c u r r e n t l y  of  i n t e r e s t  i s  p o s s i b l e .  D e v i a t i o n  of  t he  t r u e  p a r a m e t e r  
v a l u e s  f rom t h e  mean l e v e l  i s  r e g a r d e d  as  a l o c a l  p e r t u r b a t i o n .  

The q u a n t i t a t i v e  a s p e c t  o f  t h e  l o c a l - i n f l u e n c e  p r i n c i p l e  was i n v e s t i g a t e d  i n  [6] f o r  
p r o b l e m s  of  r e p l a c i n g  complex  s p a t i a l  d i s t r i b u t i o n s  of  e n e r g y  s o u r c e s  by  s i m p l e r  f o r m s .  I n -  
v e s t i g a t i o n  of  t h e  e r r o r  i n  c a l c u l a t i n g  t h e  t e m p e r a t u r e  f i e l d s  due to  p e r t u r b a t i o n s  of  t he  
bounda ry  c o n d i t i o n s  i s  n e c e s s a r y  i n  o r d e r  to  e s t a b l i s h  t h e  b a s i s  f o r  t h e  method of  s t a g e - b y -  
s t a g e  m o d e l i n g .  The s o l u t i o n  of t h i s  p r o b l e m  fo rms  the  s u b j e c t  of  our  n e x t  work ,  i n  which  
t h i s  e r r o r  i s  e s t i m a t e d .  

NOTATION 

Ti, tl, temperature of i-th body and l-th flux; %, thermal conductivity; cp, volume 
specific heat; T, time; a, heat-transfer coefficient; qv, specific power of heat sources; P, 
total power; C, total specific heat; V, volume; S, surface area; G, mass flow rate; Pi-j' 
oi-j, heat flux and conduction between bodies i and j; ~, nonu~iformity coefficient. Sub- 
scripts: V, volume mean; S, surface mean; S, n, surface mean over the n-th section; in, out, 
values at the cavity inlet and outlet. 
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